Roles of nitric oxide, nitrite and myoglobin on myocardial efficiency in trout (Oncorhynchus mykiss) and goldfish (Carassius auratus): implications for hypoxia tolerance.
نویسندگان
چکیده
The roles of nitric oxide synthase activity (NOS), nitrite and myoglobin (Mb) in the regulation of myocardial function during hypoxia were examined in trout and goldfish, a hypoxia-intolerant and hypoxia-tolerant species, respectively. We measured the effect of NOS inhibition, adrenaline and nitrite on the O(2) consumption rate and isometric twitch force development in electrically paced ventricular preparations during hypoxia, and measured O(2) affinity and nitrite reductase activity of the purified heart Mbs of both species. Upon hypoxia (9% O(2)), O(2) consumption and developed force decreased in both trout and goldfish myocardium, with trout showing a significant increase in the O(2) utilization efficiency, i.e. the ratio of twitch force to O(2) consumption, suggesting an increased anaerobic metabolism. NOS inhibition enhanced myocardial O(2) consumption and decreased efficiency, indicating that mitochondrial respiration is under a tone of NOS-produced NO. When trout myocardial twitch force and O(2) consumption are enhanced by adrenaline, this NO tone disappears. Consistent with its conversion to NO, nitrite reduced O(2) consumption and increased myocardial efficiency in trout but not in goldfish. Such a difference correlates with the lower O(2) affinity measured for trout Mb that would increase the fraction of deoxygenated heme available to catalyze the reduction of nitrite to NO. Whereas low-affinity trout Mb would favor O(2) diffusion within cardiomyocytes at high in vivo O(2) tensions, goldfish Mb having higher O(2) affinity and higher nitrite reductase activity appears better suited to facilitate O(2) diffusion and nitrite reduction in the heart during severe hypoxia, a condition particularly well tolerated by this species.
منابع مشابه
A comparative analysis of putative oxygen-sensing cells in the fish gill.
We investigated the distribution of serotonin (5-HT)-containing neuroepithelial cells (NECs), the putative O(2) sensing cells, in the gills of four species of fish: trout (Oncorhynchus mykiss), goldfish (Carassius auratus), trairão (Hoplias lacerdae) and traira (Hoplias malabaricus) using immunohistochemical markers for 5-HT, synaptic vesicles and neural innervation. We found that all fish had ...
متن کاملThe oxygen-dependence of cellular energetics was investigated in hepatocytes from goldfish Carassius auratus (anoxia-tolerant) and rainbow trout Oncorhynchus mykiss
found to be independent of O2 concentration over a wide range (Wilson et al., 1979, 1988). Recently, however, Schumacker et al. (1993) and Chandel et al. (1997) reported a marked O2dependence of respiration in rat hepatocytes when hypoxia was maintained over several hours, an experimental approach not applied in previous studies. Furthermore, O2-dependence even under acute hypoxia has been desc...
متن کاملEffect of chemical anoxia on protein kinase C and Na+, K+-ATPase in hepatocytes of goldfish (Carassius auratus) and rainbow trout (Oncorhynchus mykiss)
Protein kinase C (PKC) and Na+/K+-ATPase in hepatocytes from the anoxia-tolerant goldfish (Carassius auratus) and the anoxia-intolerant rainbow trout (Oncorhynchus mykiss) were studied to determine their role in the anoxic response of these cells. PKC and Na+/K+-ATPase activities were measured for up to 90 min in the absence (normoxia) and presence (chemical anoxia) of 2 mmol l-1 sodium cyanide...
متن کاملAll rainbow trout (Oncorhynchus mykiss) are not created equal: intra-specific variation in cardiac hypoxia tolerance.
All of our previous work, and that of other investigators, shows that the trout heart only partially recovers following brief exposure to severe hypoxia or anoxia (i.e. it is hypoxia-sensitive). However, in preliminary studies, we found evidence to suggest that rainbow trout reared at a farm in Oregon (USA) have a significant degree of inherent myocardial hypoxia tolerance. To evaluate whether ...
متن کاملThe roles of tissue nitrate reductase activity and myoglobin in securing nitric oxide availability in deeply hypoxic crucian carp.
In mammals, treatment with low doses of nitrite has a cytoprotective effect in ischemia/reperfusion events, as a result of nitric oxide formation and S-nitrosation of proteins. Interestingly, anoxia-tolerant lower vertebrates possess an intrinsic ability to increase intracellular nitrite concentration during anoxia in tissues with high myoglobin and mitochondria content, such as the heart. Here...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 213 Pt 16 شماره
صفحات -
تاریخ انتشار 2010